ماهنامه علمی پژوهشی مهندسی مکانیک مدرس. mme.modares.ac.ir

Μέγεθος: px
Εμφάνιση ξεκινά από τη σελίδα:

Download "ماهنامه علمی پژوهشی مهندسی مکانیک مدرس. mme.modares.ac.ir"

Transcript

1 مجله مهندسی مکانیک مدرس اسفند 1396 دوره 17 شماره 12 صص ماهنامه علمی پژوهشی مهندسی مکانیک مدرس mme.modares.ac.ir کنترل تعقیب مسیر و پایدارسازی یک ربات چرخدار توسط الگوریتم پیشبین 2 * 1 علي کيماسي خلجي مهدي زمانيان 1- دانشيار گروه مهندسي مکانيک دانشکده فني و مهندسي دانشگاه خوارزمي تهران ایران 2- استادیار گروه مهندسي مکانيک دانشکده فني و مهندسي دانشگاه خوارزمي تهران ایران * تهران صندوقپستي zamanian@khu.ac.ir چکیده یکي از مباحث مطرح در حوزه رباتيک کنترل حرکت رباتهاي چرخدار ميباشد. کنترل حرکت شامل مسائل تعقيب مسيرهاي حرکت زماني و پایدارسازي حول وضعيت )موقعيت و جهتگيري( مطلوب ميشود. در مقاله حاضر این مسائل کنترلي براي ربات چرخدار داراي تریلر مورد بررسي قرار گرفته و براي این منظور یک الگوریتم کنترلي پيش بين ارائه گردیده است. بنابراین در ابتدا معادالت سينماتيکي ربات متحرک دیفرانسيلي داراي تریلر استخراج ميشود. سپس مسيرهاي حرکت زماني مرجع براي ربات توليد گردیده و در ادامه یک قانون کنترل پيش بين براي حل مسائل کنترلي تعقيب مسيرهاي مرجع و پایدارسازي حول وضعيتهاي مطلوب طراحي شده است. روش کنترل پيشبين از اطالعات موجود بر مبناي معلوم بودن مقادیر مسير مرجع در زمانهاي آینده به منظور کنترل سيستم در زمان حال بهرهبرداري مينماید. بر این مبنا خطاي موقعيت نسبت به مسير مرجع در زمآنهاي آینده به منظور توليد ورودي کنترلي در زمان حال مورد استفاده قرار ميگيرد. این روش براي مسائل کنترلي فوقالذکر توسعه داده شده و به ربات چرخدار اعمال گردیده است و آنرا به صورت مجانبي حول وضعيتهاي مطلوب پایدار ميسازد. در پایان نتایج بهدست آمده براي تعقيب مسيرهاي مرجع مختلف و پایدارسازي حول وضعيت مطلوب ارائه ميگردد که کارایي روش پيشنهاد شده را نشان ميدهد. اطالعات مقاله مقاله پژوهشي کامل دریافت: 19 شهریور 1396 پذیرش: 07 آبان 1396 ارائه در سایت: 10 آذر 1396 کليد واژگان: ربات متحرک چرخدار داراي تریلر سيستمهاي غير هولونوميک تعقيب مسيرهاي حرکت زماني کنترل پيشبين Trajectory tracking and stabilization of a tractor-trailer wheeled robot using model predictive control Mehdi Zamanian *, Ali Keymasi Khalaji Department of Mechanical Engineering, Kharazmi University, Tehran, Iran * P.O.B , Tehranو Iran, zamanian@khu.ac.ir ARTICLE INFORMATION Original Research Paper Received 10 September 2017 Accepted 29 October 2017 Available Online 01 December 2017 Keywords: Wheeled mobile robot Nonholonomic systems Trajectory tracking Stabilization Predictive control ABSTRACT One of the main topics in the field of robotics is the motion control of wheeled mobile robots. Motion control encompasses trajectory tracking and point stabilization problems. In this paper these control problems will be considered for the tractor-trailer wheeled robots and a predictive control algorithm is developed for solving these problems. Therefore first kinematic model of the tractor_trailer robot is developed. Next, reference trajectories is produced for the system. Subsequently, predictive control law is designed for the trajectory tracking and point stabilization problems. Predictive control based on the known values of reference trajectories in the future, produces the control inputs in present time. Consequently the error signal with respect to the reference trajectory in future will be used in order to control the system at the present instant of time. This method is developed for solving the aforementioned control problems and is employed on the tractor_trailer wheeled robot. As can be seen from the results, the proposed control algorithm steer the wheeled robot asymptotically follow reference trajectories. Obtained results from the implementation of the proposed method for solving trajectory tracking and point stabilization problems, demonstrate the effectiveness of the presented algorithm. 1- مقدمه استفاده از روباتهاي متحرک در کاربردهاي متنوعی توسعه يافتهاست. روباتهاي چرخدار از جمله متداولترين روباتهاي متحرک میباشند. چرخ يکی از بهترين مکانيزمهاي حرکت در روباتهاي متحرک و وسايل ساخت بشر است و يک وسيلهي چرخدار در عين سادگی مکانيزم داراي بازدهی بااليی میباشد مصرف انرژي آنها پايين و نسبت به ساير مکانيزمهاي حرکت داراي سرعت بيشتري میباشند. روباتهاي چرخدار با فرض غلتش بدون لغزش چرخها از جمله سيستمهاي مقيد به قيدهاي غيرهولونوميک به حساب میآيند. اهميت کنترل سيستمهاي غيرهولونوميک به خاطر مباحث جذاب و کاربردهاي فراوان آن در صنعت و تحقيقات روز بهروز افزوده میشود [3-1]. در مرجع [4] ساختارهاي مختلف روباتهاي متحرک چرخدار و انواع مدلهاي ارائه شده براي آنها آمده است. در مرجع [5] خالصهاي از روشهاي کنترلی مورد استفاده براي سيستمهاي غيرهولونوميک آمده است. در اين زمينه تحقيقات براي رسيدن به سيستمهاي چرخدار کام اال Please cite this article using: برای ارجاع به این مقاله از عبارت ذیل استفاده نمایید: M. Zamanian, A. Keymasi Khalaji, Trajectory tracking and stabilization of a tractor-trailer wheeled robot using model predictive control, Modares Mechanical Engineering, Vol. 17, No. 12, pp , 2018 (in Persian)

2 اتوماتيک و خودکار در حال انجام است. براي رسيدن به اين هدف گامهاي مختلفی بايد برداشته شود که يکی از آنها توسعه روشهاي کنترلی و ارائه الگوريتمهاي مناسب در کنترل اين دسته از سيستمهاست بدين منظور مسائل کنترلی متنوعی مورد توجه محققان قرار گرفته است از جمله اين مسائل کنترلی میتوان به تعقيب مسير در فضاي کارتزين [7,6] پايدارسازي حول وضعيتهاي مطلوب [8,9] و تعقيب مسيرهاي حرکت زمانی [10,11] اشاره نمود. در اين مقاله مسائل تعقيب مسيرهاي حرکت زمانی و پايدارسازي حول وضعيتهاي مطلوب مورد توجه قرار گرفته است. در گذشته الگوريتمهاي کنترلی مختلفی براي اين مسائل ارائه گرديده است که از جمله آنها میتوان به قوانين کنترل تطبيقی [13,12] کنترل مد لغزشی [16-14] روشهاي غيرمبتنی بر مدل [17,2] کنترل بهينه [18] کنترل فازي [20,19] و سوئيچينگ [9,8] اشاره نمود. اما يکی از روشهايی که کمتر مورد توجه قرار گرفته روش کنترل پيشبين است که در اين مقاله به آن پرداخته شده است. اين روش در کنترل سيستمهاي مکانيکی و صنعتی بهطور گسترده اي مورد استفاده قرار گرفته است. روش کنترل پيشبين بر اين اساس است که با توجه به آنکه مقادير مسير مرجع در زمانهاي آينده معلوم است بنابراين میتوان از اطالعات موجود به منظور کنترل سيستم استفاده نمود. بر اين مبنا موقعيت مسير مرجع در زمانهاي آينده به منظور توليد ورودي کنترلی در زمان حال مورد استفاده قرار میگيرد. در در اين روش از يک مدل پيشنهادي براي سيستم استفاده میکنند و با داشتن اختيار خروجیهاي مطلوب سيستم و همچنين پيشبينی خروجیهاي آينده سيستم خطاي ميان آنها را محاسبه میکنند. سيگنال کنترلی از طريق مينيممسازي تابع هزينهاي برمبناي خطاي معرفی شده توليد و به سيستم اعمال میشود [21]. به طور کلی در الگوريتم کنترل پيش بين به دنبال حداقل کردن يک تابع هزينه هستيم. در روشهاي مختلف کنترل پيشبين ما با تابعهاي هزينه مختلف برخورد میکنيم که هر کدام از اين توابع قانون کنترل مربوط به خود را نتيجه میدهند. همچنين اين روش به سادگی قابل اعمال به سيستمهاي ناپايدار و نامينيمم فاز میباشد. از ديگر مزيتهاي اين روش آن است که کنترل پيشبين مقاومت خوبی دارد و در محيطهاي پر از اغتشاش به خوبی عمل مینمايد و اين به خاطر اين است که بخش انتگرالی به طور ذاتی در ساختار به واسطه فرضيات در نظر گرفته شده در مورد مدل وجود دارد همچنين با استفاده از اين روش امکان اعمال قيود بر روي متغيرها در طراحی کنترلکننده وجود دارد. اين ويژگیها کاربرد اين روش در سيستمهاي کنترلی را توسعه داده و در همين راستا اين مقاله به ارائه يک الگوريتم کنترلی پيشبين براي کنترل ربات چرخدار داراي تريلر میپردازد. در [22] يک الگوريتم کنترل پيشبين براي يک ربات چرخدار ارائه شده است. در مرجع [23] يک روش کنترلی پيشبين بر مبناي شبکههاي عصبی براي يک ربات چرخدار ارائه شده است. در مرجع [24] نيز يک روش کنترل پيشبين براي يک ربات چرخدار برمبناي خطیسازي مورد استفاده قرار گرفته است. اما در تحقيقات انجام شده روشی براي رباتهاي چرخدار داراي تريلر ارائه نشده است. بنابراين با توجه به کاربرد گسترده سيستمهاي داراي تريلر در سيستمهاي حمل و نقل و کشاورزي و مورد توجه قرار گرفتن هدايت خودکار اين سيستمها در اين مقاله کنترل يک سيستم داراي تريلر توسط کنترل پيشبين مورد بررسی قرار گرفته است. در ادامهي اين مقاله ابتدا مدل رياضی روبات متحرک دو چرخ ديفرانسيلی به همراه يک تريلر استخراج گرديده و مسيرهاي حرکت مرجع براي تعقيب ربات مرجع توليد شده است. سپس ديناميک خطاي تعقيب استخراج شده و يک الگوريتم کنترلی پيشبين براي براي تعقيب مسيرهاي مرجع طراحی میگردد. همچنين با تغييراتی در الگوريتم طراحی شده از آن در حل مساله کنترلی پايدارسازي حول وضعيتهاي مطلوب استفاده میشود. نتايج بدست آمده عملکرد مناسب روش کنترلی طراحی شده را نشان میدهد. 2- توصیف سیستم و مدلسازی همانگونه که در "شکل 1" نمايش داده شده است روبات مورد نظر از يک ترکتور به همراه يک تريلر تشکيل شده است. ترکتور يک روبات دو چرخ ديفرانسيلی میباشد که براي حفظ پايداري حرکت آن يک چرخ کستر هم در ساختار آن به کار رفته است. تريلر نيز داراي دو چرخ هم محور غيرفعال است. در اين سيستم چرخهاي ديفرانسيلی ترکتور داراي عملگر بوده و حرکت روبات از طريق آنها رقم میخورد. اتصال ميان ترکتور و تريلر از طريق پين غيرفعال P 0 برقرار میباشد. نقاط C 0 و C 1 به ترتيب نشان دهندهي مرکز جرم ترکتور و تريلر میباشند. همچنين φ r و φ l به ترتيب نمايش دهندهي جابجايی زاويهاي چرخهاي سمت راست و چپ ترکتور هستند. d فاصلهي ميان نقاط P 0 و P 1 را نمايش میدهد و a 0 و a 1 به ترتيب فاصلهي ميان نقاط P 0 و C 0 و نقاط P 1 و C 1 میباشند. اين ابعاد در "شکل 1" نمايش داده شدهاند. وضعيت ربات متحرک داراي تريلر با بردار مختصات تعميم يافتهي q = (x y θ 1 θ 0 ) T نشان داده میشود که در آن y) (x, مختصات نقطهي P 1 میباشد و θ 0 و θ 1 به ترتيب جهتگيري ترکتور و تريلر نسبت به دستگاه مرجع را نشان میدهند. اين سيستم در مراجعی همچون [1,10] نيز مورد تحليل قرار گرفته است. براي حرکت روبات فرضياتی در نظر گرفته شده است. حرکت روبات به صورت صفحهاي در نظر گرفته شده است. چرخهاي روبات در جهت جانبی لغزش ندارند. چرخهاي روبات در حرکت رو به جلو غلتش خالص مینمايند. با اين فرضيات در مدلسازيهاي روبات قيود غيرهولونوميک حاکم بر سينماتيک روبات استخراج شده است. چرخهاي محور ثابت بهکار رفته در ساختار روبات به خاطر فرضيات عدم لغزش در جهت جانبی و غلتش خالص در حرکت رو به جلو محدوديتهايی y j Fig. 1 Differential drive wheeled mobile robot towing a trailer شکل 1 ربات متحرک چرخدار به همراه يک تريلر b P 0 a 1 C 1 θ 1 ψ l P 1 d x C 0 ψ r φ r i 861

3 براي حرکت روبات ايجاد مینمايند. بنابراين قيدهاي سينماتيکی براي يک چرخ محور ثابت بيانگر اين موضوع میباشند که سرعت مرکز چرخ موازي صفحهي چرخ بوده )شرط عدم لغزش( و با سرعت دوران چرخ متناسب است )شرط غلتش خالص(. اين قيدهاي سينماتيکی از نوع غيرهولونوميک میباشند يعنی بيانگر يک محدوديت در ردهي سرعتها میباشند و حذف مختصات اضافی در چنين سيستمی امکانپذير نيست. در واقع قيدهاي غيرهولونوميک سطح دسترسی روبات را نمیکاهند بلکه قابليت مانور آن را کاهش میدهند. بيان رياضی اين قيود به رابطهاي منتهی میشود که نسبت به سرعتهاي تعميميافته خطی است و به صورت رابطهي زير بيان میگردد. a j (q)q = 0 (j = 1,..., m) (1) قيود سيستم در فرمت ماتريسی نيز به صورت زير میباشند: A(q)q = 0 (2) که در آن A(q) ماتريس قيدي n m میباشد. n تعداد قيدهاي سيستم و m تعداد مختصات تعميميافتهي سيستم است. براي ربات متحرک چرخدار داراي تريلر ماتريس قيدي بهصورت زير بهدست میآيد: A(q) = ( sin θ 1 cos θ sin θ 0 cos θ 0 d cos(θ 0 θ 1 ) 0 ) (3) در اينصورت ماتريس S(q) با رتبه m وجود دارد که شامل بردارهاي مستقل خطی میباشد که فضاي تهی ماتريس قيدي را افراز میکنند به طوريکه: S T (q)a T (q) = 0 ماتريس S(q) براي ربات متحرک چرخدار داراي تريلر بهصورت زير میباشد: cos θ 1 0 sin θ 1 0 S(q) = 1 d tan(θ 0 θ 1 ) 0 ( 0 1) (5) بنابراين مدل سينماتيکی ربات متحرک چرخدار داراي تريلر را میتوان (4) به صورت زير بيان نمود: q = S(q)u u = u) 1 بردار وروديهاي سينماتيکی مستقل (6) که در آن u (2 T سيستم است. u 1 سرعت خطی نقطهي P 1 و u 2 سرعت زاويهاي ترکتور میباشد. اين وروديها با سرعتهاي دورانی چرخهاي ديفرانسيلی به صورت زير مرتبط میباشند: u 1 = r { 2 (φ r + φ l ) cos(θ 1 θ 0 ) u 2 = r 2b (φ r φ l ) (7) که در آن r شعاع چرخهاي داراي عملگر ربات است. b نصف فاصلهي ميان چرخهاي ربات است. φ r و φ l به ترتيب سرعتهاي زاويهاي چرخهاي سمت راست و چپ داراي عملگر ربات میباشند. 3- طراحي مسیرهای حرکت زماني مرجع فرض میکنيم که مسير حرکت خروجی در دستگاه مختصات کارتزين به صورت زير داده شده است. { x = x r (t) y = y r (t) (8) از اين اطالعات میتوان متغيرهاي حرکت ربات روي مسير مرجع را بدست آورد. متغيرهاي سينماتيکی مرجع ربات متحرک بايد از طريق حل سينماتيک ربات روي مسير مطلوب ربات بهدست آيد تا مسيرهاي حرکت زمانی توليد شده براي ربات ما قابل پيمايش باشد مسيرهاي حرکت زمانیاي که به اين ترتيب توليد نشوند براي مسئلهي تعقيب ربات متحرک مناسب نمیباشند [25]. بنابراين متغيرهاي مرجع ربات روي مسير در نظر گرفته شده در فضاي کارتزين از طريق روابط )6( محاسبه میگردند. از روابط )6( نخستين ورودي سينماتيکی به صورت زير محاسبه میشود. u 1r = x r 2 + y r2 (9) همچنين θ 1r را میتوان به صورت زير محاسبه نمود: θ 1r = atan2{y r, x r } (10) که atan2 معکوس تابع تانژانت در يک دور کامل میباشد. حال با مشتقگيري از رابطهي فوق و ترکيب نتايج u 1r حذف شده و به رابطهي زير میرسيم. y r (t) x r (t) x r (t) y r (t) θ 1r (t) = (11) u 2 1r (t) همچنين θ 0r نيز به صورت زير بهدست میآيد. d θ 1r θ 0r = θ 1r + atan ( ) (12) u 1r با مشتقگيري از رابطهي فوق و جايگزينی در رابطهي چهارم روابط )6( ورودي دوم به صورت زير بهدست میآيد. u 2 = θ 1r + d u 1r (y r x r x r y r ) u 1r 2 3(y r x r x r y r )(x r x r + y r y r) u 6 1r + d 2 (y r x r x r y r )2 (13) 4- کنترل تعقیب مسیرهای حرکت زماني کنترل تعقيب مسيرهاي حرکت زمانی يکی از مهمترين مسائل کنترلی در زمينه رباتهاي متحرک چرخدار است که در مراجع مختلف مورد تحليل قرار گرفته است [11]. بهمنظور کنترل تعقيب مسيرهاي حرکت زمانی ابتدا ديناميک خطاي تعقيب سيستم را تشکيل میدهيم. بنابراين در صورتی که قانون کنترلی برمبناي ديناميک خطاي توليد شده به دست بيايد و اين ديناميک خطا را پايدار سازد میتوان نتيجه گرفت که با الگوريتم طراحی شده خطاي تعقيب با گذشت زمان از بين خواهد رفت [1]. به بيان ديگر میخواهيم قانون کنترل فيدبک ) r u = u(q, q, q r, u را براي سيستم بيابيم به طوري که خطاي تعقيب q = q q r پايدار گردد. در ادامه به حل اين مسأله کنترلی میپردازيم. يک بردار خطاي نگاشت يافته به صورت زير در نظر میگيريم که طبق رابطهي زير تعريف شده است. e = Tq e = (e 1 e 2 e 3 e 4) T ماتريس تبديل T متغيرهاي (14) که در آن خطاي تعقيب را به يک فضاي جديد نگاشت میدهد. ماتريس تبديل T را به صورت زير تعريف مینماييم. cos θ 1 sin θ sin θ T = ( 1 cos θ ) (15) کامالا مشخص است که اگر وروديهاي کنترلی به نحوي تعيين گردند که معادالت خطا در مبدأ پايدار شوند متغيرهاي حرکت ربات متحرک به صورت q = (x y θ 1 θ 0 ) T مسير حرکت زمانی مرجع به فرم کلی q r = (x r y r θ 1r θ 0r ) T را تعقيب خواهند نمود بنابراين میتوان از تبديل مزبور استفاده نمود. حال از رابطهي )14( نسبت به زمان مشتق میگيريم تا معادالت ديفرانسيل خطاي تعقيب بهدست آيد. 866

4 e(k + 2 k) = A(k + 1)e(k + 1 k) + Bu (k + 1 k) e(k + N k) = A(k + N 1)e(k + N 1 k) +Bu (k + N 1 k) (24) بر همين اساس تابع هدف معرفی e = T q + Tq (16) يا به عبارت ديگر ( 17 )با ) r e = T (q q r ) + T(q q سادهسازي رابطهي فوق میتوان به رابطهي کلی زير به عنوان ديناميک خطاي سيستم دست يافت: e = f(e, q r, u r, u) (18) حال با تقريب خطی ديناميک خطاي فوقالذکر با استفاده از سري تيلور حول وضعيت تعادلی سيستم که همان مسيرهاي حرکت مرجعاند و صرفنظر از جمالت مراتب باال میتوان به رابطه زير دست يافت: e = f q f (q q r ) + u (u u r ) (19) با جايگذاري از معادله )14( خواهيم داشت: e = f q T 1 f e + u u (20) که در آن u = u u r میباشد. معادله فوق تقريبی خطی از ديناميک و خطاي سيستم است که با تقريب اويلر میتوان آن را به صورت گسسته زير بيان کرد: e(k + 1) = A(k)e(k) + B(k)u (k) (21) که در آن ماتريسهاي A و B به صورت زير خواهند بود: A = I T f q T 1 Tu 1 1r tan(θ d 0r θ 1r ) = Tu 1r tan(θ d 0r θ 1r ) [ B = T f u = 4 4 است. Tu 1r 0 Tu 1r Tu 1r 1 d cos 2 (θ 0r θ 1r ) d cos 2 (θ 0r θ 1r ) 0 1 ] T T d tan(θ 0r θ 1r ) 0 [ 0 T] (22) که در آن T ثابت زمانی سيستم و ماتريس واحد I 4 4 در طراحی الگوريتم کنترلی به روش کنترل پيشبين با در اختيار داشتن خروجیهاي مطلوب سيستم و همچنين پيشبينی خروجیهاي آينده سيستم خطاي ميان آنها را محاسبه میکنند [21]. سيگنال کنترلی از طريق مينيممسازي تابع هزينهاي بر مبناي خطاي معرفی شده توليد و به سيستم اعمال میگردد. اين تابع هزينه به صورت زير محاسبه می شود: N J(u, k) = e T (k + i k) Q e(k + i k) i=1 +u T(k + i 1 k) R u (k + i 1 k) (23) که در آن Q و R ماتريسهاي وزنی و N افق پيشبينی میباشد. به عبارت ديگر مجموع تخمين مربعات خطاهاي آينده سيستم )شامل خطاي مختصات تعميميافته و وروديهاي سيستم( تا افق پيشبينی )N( تابع هدفی را میسازد که با کمينه کردن آن به دنبال محاسبه وروديهاي کنترلی هستيم. با محاسبه خطاها در لحظات آينده از رابطهي ديناميک خطاي سيستم تا e(k + 1 k) = A(k)e(k) + Bu (k) افق پيشبينی )N( روابط زير را خواهيم داشت: ماتريسی زير نوشت: شده را میتوان به فرمت برداري- J(u, k) = E T (k + 1) Q E(k + 1) + U T (k) R U(k) (25) که در آن بردارهاي U و E به صورت زير معرفی میشوند: e(k + 1 k) u (k) e(k + 2 k) u (k + 1 k) E(k + 1) = [ ] ; U(k) = [ ] e(k + N k) u (k + N 1 k) (26) همچنين ماتريسهاي وزنی Q و R نيز به شکل زير بيان میگردند: Q 0 0 R 0 0 Q = [ 0 Q 0 ] ; R = [ 0 R 0 ] 0 0 Q 0 0 R (27) براساس تعاريف فوق ديناميک خطاي سيستم را به صورت برداري ماتريسی به شکل زير می توان بيان نمود: E(k + 1) = A(k)E(k) + B(k)U(k) (28) که در آن A(k k) A(k k)a(k + 1 k) A(k) = N 1 A(k + j k) [ j=0 ] B(k k) A(k + 1 k)b(k k) B(k) = N 1 j=2 N 1 A(k + j k) B(k k) [ j=1 0 0 B(k + 1 k) 0 A(k + j k) B(k + 1 k) B(k + N 1 k) ] (29) با قرار دادن رابطهي )25( در )28( میتوان به رابطهي زير رسيد: J(u, k) = 1 2 UT (k) H(k) U(k) + F T (k) U(k) + d(k) که در آن (30) H(k) = 2(B T (k) Q B(k) + R) F(k) = 2 B T (k) Q A(k) e(k k) d(k) = e T (k k) A T (k) Q A(k) e(k k) (31) با کمينه کردن تابع هدف بردار ورودي محاسبه سيستم میشود. براي J U = H(k) U(k) + FT (k) = 0 اين منظور خواهيم داشت: بنابراين: (32) U(k) = H 1 (k) F T (k) (33) با استفاده از روابط )26( و )33( میتوان نتيجه گرفت: u (k) = [I N ]U(k) (34) که در آن 2 2 I ماتريس همانی 2 2 بوده همچنين ورودي کنترلی سيستم به صورت زير محاسبه میشود: u(k) = u (k) + u r (k) (35) 5- پایدارسازی حول وضعیتهای مطلوب در مسئلهي پايدارسازي حول يک وضعيت معين هدف رسيدن شاسی روبات به يک وضعيت مطلوب )موقعيت و جهتگيري( میباشد [9,8]. در حقيقت

5 مسئلهاي که با آن روبرو هستيم پايداري مجانبی نقطهي تعادل يک سيستم کنترلپذير چند ورودي چند خروجی غيرمربعی است [26]. براي حل اين مساله کنترلی مشابه حالت قبل تابع هدف معرفی شده را میتوان به صورت زير نوشت: N 1 J(u, k) = e T (k + i k)q e(k + i k) N i=1 + u T(k + i 1 k) R u (k + i 1 k) i=1 +e T (k + N k)p e(k + N k) (36) که در آن نسبت به حالت تعقيب مسير جمله پنالتی زمان نهايی بهصورت N k) e T (k + N k)p e(k + اضافه شده است و میتوان ماتريس وزنی P را چندين برابر بزرگتر از Q در نظر گرفت تا اهميت بيشتري به وضعيت نهايی سيستم اختصاص دهد بنابراين در نهايت به وضعيت نهايی همگرا گردد. همچنين میتوان ماتريس وزنی Q را بهصورت متغير با زمان در نظر گرفت تا اهميت موقعيتهاي سيستم نسبت به وضعيت نهايی پله پله بيشتر گردد. يک انتخاب میتواند بهصورت Q(i) = e i Q باشد. در اين حالت در روابط کنترلی 1 4 = 0 r q فرض شده و بهعنوان وضعيت نهايی سيستم در نظر گرفته شده است و بنابراين بردار خطا به صورت e = Tq در نظر گرفته میشود. بر اين اساس شبيهسازيها انجام شده و در ادامه ارائه شده است. 6- نتایج بهدست آمده در اين قسمت به منظور بررسی کارايی کنترلر پيشنهادي نتايج بهدست آمده ارائه شده است. مشخصات هندسی و مقادير پارامترهاي سيستم در جدول 1 ارائه شده است. مطلوب آن است که ربات داراي تريلر با اعمال ورودي کنترلی مسير مرجع موردنظري را دنبال نمايد. دياگرام کنترلی سيستم در "شکل 2" نمايش داده شده است. پارامترهاي کنترلی نيز در جدول 2 ارائه شده است. در تحليلهاي انجام شده حد اشباع وروديهاي سينماتيکی به صورت زير در نظر گرفته شده است: در Fig. 2 Control diagram for the tractor-trailer robot شکل 2 دياگرام کنترلی ربات ترکتور-تريلر 1-6- نتايج حاصل از کنترل تعقيب مسيرهاي حرکت زماني براساس ورودي کنترلی محاسبه شده طبق رابطه )36( و اعمال آن به سيستم ربات چرخدار داراي تريلر نتايج محاسبه گرديده است. همانگونه که انتظار میرود با شروع از شرايط اوليه دلخواه و با گذشت زمان محدودي خطاهاي تعقيب مسير ربات حول صفر همگرا شده و پاسخهاي گذراي سيستم از بين رفته و تعقيب مسيرهاي حرکت مرجع به خوبی صورت پذيرفته است. در "شکل 3" مسير حرکت ربات و مسير مرجع سينوسی در صفحهي حرکت با شروع از شرايط اوليهي مختلف نشان داده شدهاند. مسير مرجع در نظر گرفته شده در فضاي کارتزين بهصورت زير است: ( 38 )شرايط اوليه ) τ y r = sin ( t τ ) ; x r = ( t "شکل ترسيم شده است. در ي سيستم نيز مقادير زير در نظر گرفته شده است: q 1 (0) = [0.5 2 π π T 2 2 ] q 2 (0) = [ ] T q 3 (0) = [ ] T q 4 (0) = [ ] T 4" سيگنالهاي خطاي کنترلی براي تعقيب مسير ربات "شکلهاي 5" نيز وروديهاي کنترلی ارائه شدهاند. در "شکل 3" مشاهده میشود که مسير مرجع سينوسی در صفحه کارتزين توسط ربات با شروع از شرايط اوليه مختلف خارج از مسير به خوبی دنبال شده است. با توجه به "شکلهاي 3 و 4" کامالا مشخص است که ربات متحرک با خطاهاي اوليهي مختلف تا بيش از 2.5 متر نسبت به مسير مرجع شروع به حرکت نموده و در زمانی حدود 5 ثانيه تقريبا خطاهاي کنترلی از بين رفته است و ربات به خوبی مسير سينوسی در فضاي کارتزين را دنبال نموده است. u r Trajectory Planner q r q q e = Tq Predictive Control u u Mobile Robot u 1 u 1max u 1 u 1max (37) جدول 1 مقادير پارامترهاي سيستم پارامتر توصيف Table 1 System parameters مقدار طول P 0 P 1 شعاع چرخها d r 2b فاصله بين چرخهاي ربات Fig. 3 Motion path for the robot and the sinusoidal reference path in planar motion for different initial conditions شکل 3 مسير حرکت ربات و مسير مرجع سينوسی در صفحهي حرکت براي شرايط جدول 2 پارامترهاي کنترلی پارامتر توصيف Table 2 Control parameters مقدار T ثابت زمانی سيستم 0.02 N افق پيشبينی کنترلکننده 100 R ماتريس وزنی کنترلکننده diag([5,5,.01,.01]) Q ماتريس وزنی کنترلکننده diag([0.1,0.1] τ پارامتر مسير مرجع 10 u 1max حد اشباع ورودي اول سينماتيکی 1.5 m/s u 1max حد اشباع ورودي دوم سينماتيکی اوليهي مختلف 1.5 rad/s 878

6 Fig. 6 Motion path for the robot and the circular reference path in planar motion for different initial conditions شکل 6 مسير حرکت ربات و مسير مرجع دايروي در صفحهي حرکت براي شرايط Fig. 4 Error signals for the tracking of Sinusoidal reference path (for IC1) شکل 4 سيگنالهاي خطاي کنترلی براي تعقيب مسير سينوسی )حالت )IC1 Fig. 5 Kinematic control inputs (for IC1) شکل 5 وروديهاي کنترلی سينماتيکی )حالت )IC1 همانگونه که مالحظه میگردد وروديهاي کنترلی هموار و داراي مقادير و دامنه تغييرات و سرعت تغييرات معقولی میباشند و در زمان مقدار وروديها داراي پرش نمیباشند. اين موضوع نشاندهنده انتخاب مناسب بهرههاي کنترلی است که با داشتن عملکرد مناسب سيستم حلقه بسته وروديهاي کنترلی مناسبی نيز داشته باشيم. در "شکلهاي 6 و 7" مسير حرکت ربات به ترتيب در تعقيب مسير مرجع دايروي و خطی در صفحهي حرکت با شروع از شرايط اوليهي مختلف نشان داده شده است. مسيرهاي مرجع در نظر گرفته شده در فضاي کارتزين بهصورت زير است: اوليهي مختلف حدود 10 ثانيه تقريبا خطاهاي کنترلی از بين رفته و ربات حرکت مطلوب خود در تعقيب مسير دايروي در فضاي کارتزين را گرفته است. شرايط اوليهي سيستم در تعقيب مسير خطی نيز مقادير زير در نظر گرفته شده است: در "شکل 7" q 1 (0) = [ ] T q 2 (0) = [ ] T q 3 (0) = [ ] T q 4 (0) = [ ] T مشاهده میشود که مسير خطی در صفحه کارتزين توسط ربات متحرک با شروع از شرايط اوليه مختلف خارج از مسير پس از پاسخ گذراي خود به خوبی دنبال گرديده است نتايج حاصل از پايدارسازي سيستم در اين قسمت نتايج حاصل از پايدارسازي سيستم حول مبدأ ارائه گرديده است. در "شکل 8" مسير حرکت ربات متحرک در پايدارسازي حول وضعيت مطلوب نشان داده شده است. با توجه به "شکل 8" نيز کامالا مشخص است که پايدارسازي حول x r = t τ ; y r = t τ Fig. 7 Motion path and the linear reference path in planar motion for different initial conditions شکل 7 مسير حرکت ربات و مسير مرجع خطی در صفحهي حرکت براي شرايط x r = sin ( t τ ) ; y r = cos ( t τ ) (39) شرايط اوليهي سيستم در تعقيب مسير دايروي نيز مقادير زير در نظر گرفته شده است: "شکل در q 1 (0) = [0 6" ] T q 2 (0) = [ ] T q 3 (0) = [ ] T q 4 (0) = [ ] T مشاهده میشود که مسير مرجع دايروي در صفحه کارتزين توسط ربات متحرک با شروع از شرايط اوليهي خارج از مسير به خوبی دنبال گرديده است. با توجه به "شکل 6" کامالا مشخص است که ربات متحرک با خطاي اوليهاي بيش از 1.5 متر شروع به حرکت نموده و در زمانی اوليهي مختلف

7 در "شکل 12" مشاهده میشود که مسير دايروي در صفحه کارتزين Fig. 9 Motion path for the robot and the sinusoidal reference path in planar motion in presence of measurement noise شکل 9 مسير حرکت ربات و مسير مرجع سينوسی در صفحهي حرکت در حضور Fig. 8 Motion path of the robot in stabilization around the origin for different initial conditions شکل 8 مسير حرکت ربات در پايدارسازي حول مبدأ با شرايط اوليه مختلف وضعيت مطلوب در فضاي کارتزين براي ربات متحرک انجام شده است و الگوريتم ارائه شده عملکرد مناسبی را نشان میدهد. نتايج بدست آمده نشان میدهد الگوريتم کنترل پيشبين عملکرد مناسبی در کنترل حرکت ربات چرخدار داراي يک تريلر در تعقيب مسيرهاي مرجع زمانی از خود نشان میدهد. همانگونه که مشاهده میشود براي مسيرهاي مرجع مختلف با شروع از شرايط اوليه متنوع پس از زمانی محدود ربات چرخدار خود را به مسير مرجع رسانده و در يک حاشيه مناسبی از آن قرار گرفته است. خطاهاي کنترلی همانگونه که انتظار میرفت با گذشت زمان به صفر همگرا شده و از بين میروند. در نتيجه رباتهاي پيرو در آرايش تعيين شده مطلوب خود در وضعيت موردنظر نسبت به مسير مرجع قرار میگيرند. وروديهاي کنترلی توليد شده داراي مقادير مناسبی میباشند و در محدوده معقولی قرار دارند. نويز اندازهگيري Fig. 10 Error signals for the tracking of Sinusoidal reference path in presence of measurement noise شکل 10 سيگنالهاي خطاي کنترلی براي تعقيب مسير سينوسی در حضور نويز 3-6- اعمال اثر نويز بهمنظور بررسی ميزان مقاومت کنترلر در برابر نويز فرض شده است که اندازهگيري متغيرهاي حالت با نويز همراه باشد بدين منظور نويز سفيد با واريانس به متغيرهاي حالت سيستم اضافه شده و نتايج ارائه شده است. با توجه به اينکه چنين نويزي در اندازهگيريهاي واقعی با استفاده از ابزارهاي اندازهگيري امروزي معمو اال اتفاق نمیافتد اين نتايج میتواند مقاومت مناسب روش کنترلی پيشنهادي را نشان دهد. در "شکل 9" مشاهده میشود که مسير سينوسی در صفحه کارتزين توسط ربات متحرک با شروع از شرايط اوليه دلخواه خارج از مسير پس از پاسخ گذراي خود به خوبی دنبال گرديده است. در "شکل 10" سيگنالهاي خطاي کنترلی براي تعقيب مسير ربات ترسيم شده است. در "شکل 11" نيز وروديهاي کنترلی ارائه شدهاند. همانگونه که مشاهده میشود با توجه به نويز اندازهگيري اضافه شده که در استفاده از وسايل اندازهگيري امروزي کمتر اتفاق میافتد و حتی امکان فيلتر آنها وجود دارد پاسخهاي سيستم مطلوب بوده و کنترلر در برابر نويز از خود مقاومت نشان داده است مقايسه عملکرد روش پيشنهادي با روش بر مبناي لياپانوف در اين قسمت ميان عملکرد روش کنترلی ارائه شده و کنترل سينماتيکی بر مبناي لياپانوف پيشنهاد شده توسط نويسندگان در مرجع [1] مقايسهاي انجام شده است. اندازهگيري Fig. 11 Kinematic control inputs in presence of measurement noise شکل 11 وروديهاي کنترلی سينماتيکی در حضور نويز اندازهگيري

8 توسط ربات متحرک با شروع از شرايط اوليه دلخواه خارج از مسير پس از پاسخ گذراي خود توسط دو روش کنترلی دنبال گرديده است. در "شکل 13" نيز وروديهاي کنترلی سينماتيکی براي دو روش ارائه و مقايسه شدهاند. نتايج نشاندهنده آن است که عملکرد روش ارائه شده با شرايط يکسان براي دو کنترلر داراي نوسانات کمتر پاسخها و وروديهاي کنترلی سيستم است. همچنين زمان نشست کنترل پيشبين کمتر بوده و فراجهش آن کمی کمتر است. در مجموع نتايج و مطالعات موردي انجام گرفته کارايی مناسب روش ارائه شده را نشان میدهد. 7- نتیجهگیری در اين مقاله مسائل کنترلی تعقيب مسيرهاي حرکت مرجع و پايدارسازي حول يک نقطه مطلوب براي يک ربات چرخدار داراي تريلر به عنوان يک سيستم غيرخطی کم عملگر و غيرهولونوميک توسط روش کنترل پيشبين مورد بررسی قرار گرفت. روش کنترلی ارائه شده برمبناي کمينه سازي تابع هدف متشکل از مربعات خطاي تعقيب و انرژي کنترلی عمل مینمايد. قانون کنترلی براي اين روش بهصورت تحليلی بهدست آمده و معادالت آن در مقاله حاضر ارائه گرديد. ابتدا مدل رياضی سيستم استخراج گرديد. سپس مسيرهاي حرکت مرجع مناسب براي ربات توليد گرديد و يک کنترلر پيشبين براساس فيدبک حالتهاي سيستم براي ربات طراحی گرديد. همچنين با تغييراتی در الگوريتم طراحی شده از آن در حل مساله کنترلی پايدارسازي حول وضعيتهاي مطلوب استفاده گرديد. نتايج بهدست آمده کارآمد بودن روش ارائه شده براي کنترل ربات در تعقيب مسيرهاي زمانی مرجع مختلف و پايدارسازي حول وضعيتهاي مطلوب را تاييد مینمايند. 8- تقدير و تشکر اين تحقيق در گروه مهندسی مکانيک دانشگاه خوارزمی و تحت حمايت مالی معاونت پژوهشی دانشگاه خوارزمی انجام شده که در اينجا از حمايتهاي صورت گرفته توسط اين معاونت قدردانی میشود. 9- مراجع [1] A. Keymasi Khalaji, S. A. A. Moosavian, Robust Adaptive Controller for a Tractor-Trailer Mobile Robot, IEEE/ASME Transactions on Mechatronics, Vol. 19, No. 3, pp , [2] A. Keymasi Khalaji, M. R. Bidgoli, S. A. A. Moosavian, Non-model-based control for a wheeled mobile robot towing two trailers, Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, Vol. 229, No. 1, pp , [3] A. Keymasi Khalaji, S. A. A. Moosavian, Dynamic Modeling and Tracking Control of a Car with n Trailers, Journal of Multi-body System Dynamics, Vol. 37, No. 2, pp , [4] G. Campion, G. Bastin, B. Dandrea Novel, Structural properties and classification of kinematic and dynamic models of wheeled mobile robots, IEEE Transactions on Robotics and Automation, Vol. 12, No. 1, pp , [5] I. Kolmanovsky, N. H. McClamroch, Developments in nonholonomic control problems, IEEE Control Systems Vol. 15, No. 6, pp , [6] C. Altafini, Path following with reduced off-tracking for multibody wheeled vehicles, IEEE Transactions on Control Systems Technology, Vol. 11, No. 4, pp , [7] L. Chang Boon, W. Danwei, GPS-Based Path Following Control for a Car- Like Wheeled Mobile Robot With Skidding and Slipping, IEEE Transactions on Control Systems Technology, Vol. 16, No. 2, pp , [8] A. Keymasi Khalaji, S. A. A. Moosavian, Stabilization of a tractor-trailer wheeled robot, Journal of Mechanical Science and Technology, Vol. 30, No. 1, pp , [9] A. Keymasi Khalaji, S. A. A. Moosavian, Switching Control of a Tractor- Trailer Wheeled Robot, International Journal of Robotics and Automation, Vol. 30, No. 2, /Journal , [10] A. Keymasi Khalaji, S. A. A. Moosavian, Fuzzy Sliding Mode Control Law for a Wheeled Mobile Robot Towing a Trailer, Journal of Modares Mechanical Engineering, Vol. 14, No. 4, pp , 2014 (Written in Persian). [11] A. Khanpoor, A. K. Khalaji, S. A. A. Moosavian, Modeling and control of an underactuated tractor trailer wheeled mobile robot, Robotica, Vol. 35, No. 12, pp , [12] Z. Peng, S. Yang, G. Wen, A. Rahmani, Y. Yu, Adaptive distributed formation control for multiple nonholonomic wheeled mobile robots, Neurocomputing, Vol. 173, No. 3, pp , [13] M. Rahmani, A. Ghanbari, M. M. Ettefagh, Robust adaptive control of a bioinspired robot manipulator using bat algorithm, Expert Systems with Applications, Vol. 56, pp , /j.eswa , [14] A. Keymasi Khalaji, S. A. A. Moosavian, Adaptive sliding mode control of a wheeled mobile robot towing a trailer, Proceedings of the Institution of Mechanical Engineers, Part I: Journal of Systems and Control Engineering, Vol. 229, No. 2, pp , [15] M. Rahmani, A. Ghanbari, M. M. Ettefagh, Hybrid neural network fraction integral terminal sliding mode control of an Inchworm robot manipulator, Mechanical Systems and Signal Processing, Vol.80, pp , [16] M. Rahmani, A. Ghanbari, M. M. Ettefagh, A novel adaptive neural network integral sliding-mode control of a biped robot using bat algorithm. Journal of Vibration and Control, / , [17] A. Keymasi Khalaji, S. A. A. Moosavian, Modified transpose Jacobian control of a tractor-trailer wheeled robot, Journal of Mechanical Science and Technology, Vol. 29, No. 9, pp , Fig. 12 Comparison of motion path for the robot and the circular reference path for predictive control and Lyapunov-based method presented in [1] شکل 12 مقايسه مسير حرکت ربات و مسير مرجع دايروي کنترل پيشبين و کنترل برمبناي لياپانوف ارائه شده در [1] Fig. 13 Comparison of kinematic control inputs for predictive and Lyapunov-based controllers presented in [1] شکل 13 مقايسه وروديهاي کنترلی سينماتيکی کنترل پيشبين و کنترل برمبناي لياپانوف ارائه شده در [1]

9 6, pp , [23] D. Gu, H. Hu, Neural predictive control for a car-like mobile robot, Robotics and Autonomous Systems, Vol. 39, No. 2, pp , [24] W. F. Lages, J. A. Vasconcelos Alves, Real-time control of a mobile robot using linearized model predictive control, IFAC Proceedings Volumes, Vol. 39, No. 16, pp , [25] A. Luca, G. Oriolo, C. Samson, Feedback control of a nonholonomic car-like robot, Lecture Notes in Control and Information Sciences in: J. P. Laumond, Robot Motion Planning and Control, Eds., pp : Springer Berlin Heidelberg, [26] M. G. Villarreal-Cervantes, J. F. Guerrero-Castellanos, S. Ramírez-Martínez, J. P. Sánchez-Santana, Stabilization of a (3,0) mobile robot by means of an event-triggered control, ISA Transactions, Vol. 58, pp , /j.isatra , [18] M. S. Miah, W. Gueaieb, Mobile robot trajectory tracking using noisy RSS measurements: An RFID approach, ISA Transactions, Vol. 53, No. 2, pp , [19] Y. H. Chang, C. W. Chang, C. L. Chen, C. W. Tao, Fuzzy Sliding-Mode Formation Control for Multirobot Systems: Design and Implementation, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), Vol. 42, No. 2, pp , [20] C.-Y. Chen, T.-H. S. Li, Y.-C. Yeh, EP-based kinematic control and adaptive fuzzy sliding-mode dynamic control for wheeled mobile robots, Information Sciences, Vol. 179, No. 1 2, pp , [21] E. F. Camacho, C. B. Alba, Model predictive control, Springer Science & Business Media, pp , [22] G. Klančar, I. Škrjanc, Tracking-error model-based predictive control for mobile robots in real time, Robotics and Autonomous Systems, Vol. 55, No.

محاسبه ی برآیند بردارها به روش تحلیلی

محاسبه ی برآیند بردارها به روش تحلیلی محاسبه ی برآیند بردارها به روش تحلیلی برای محاسبه ی برآیند بردارها به روش تحلیلی باید توانایی تجزیه ی یک بردار در دو راستا ( محور x ها و محور y ها ) را داشته باشیم. به بردارهای تجزیه شده در راستای محور

Διαβάστε περισσότερα

روش محاسبه ی توان منابع جریان و منابع ولتاژ

روش محاسبه ی توان منابع جریان و منابع ولتاژ روش محاسبه ی توان منابع جریان و منابع ولتاژ ابتدا شرح کامل محاسبه ی توان منابع جریان: برای محاسبه ی توان منابع جریان نخست باید ولتاژ این عناصر را بدست آوریم و سپس با استفاده از رابطه ی p = v. i توان این

Διαβάστε περισσότερα

در اين آزمايش ابتدا راهاندازي موتور القايي روتور سيمپيچي شده سه فاز با مقاومتهاي روتور مختلف صورت گرفته و س سپ مشخصه گشتاور سرعت آن رسم ميشود.

در اين آزمايش ابتدا راهاندازي موتور القايي روتور سيمپيچي شده سه فاز با مقاومتهاي روتور مختلف صورت گرفته و س سپ مشخصه گشتاور سرعت آن رسم ميشود. ك ي آزمايش 7 : راهاندازي و مشخصه خروجي موتور القايي روتور سيمپيچيشده آزمايش 7: راهاندازي و مشخصه خروجي موتور القايي با روتور سيمپيچي شده 1-7 هدف آزمايش در اين آزمايش ابتدا راهاندازي موتور القايي روتور

Διαβάστε περισσότερα

آزمایش 1: پاسخ فرکانسی تقویتکننده امیتر مشترك

آزمایش 1: پاسخ فرکانسی تقویتکننده امیتر مشترك آزمایش : پاسخ فرکانسی تقویتکننده امیتر مشترك -- مقدمه هدف از این آزمایش بدست آوردن فرکانس قطع بالاي تقویتکننده امیتر مشترك بررسی عوامل تاثیرگذار و محدودکننده این پارامتر است. شکل - : مفهوم پهناي باند تقویت

Διαβάστε περισσότερα

e r 4πε o m.j /C 2 =

e r 4πε o m.j /C 2 = فن( محاسبات بوهر نيروي جاذبه الکتروستاتيکي بين هسته و الکترون در اتم هيدروژن از رابطه زير قابل محاسبه F K است: که در ا ن بار الکترون فاصله الکترون از هسته (يا شعاع مدار مجاز) و K ثابتي است که 4πε مقدار

Διαβάστε περισσότερα

هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومRLC اندازهگيري پارامترهاي مختلف معادله

هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومRLC اندازهگيري پارامترهاي مختلف معادله آزما ی ش پنج م: پا س خ زمانی مدا رات مرتبه دوم هدف از انجام این آزمایش بررسی رفتار انواع حالتهاي گذراي مدارهاي مرتبه دومLC اندازهگيري پارامترهاي مختلف معادله مشخصه بررسی مقاومت بحرانی و آشنایی با پدیده

Διαβάστε περισσότερα

ﻞﻜﺷ V لﺎﺼﺗا ﺎﻳ زﺎﺑ ﺚﻠﺜﻣ لﺎﺼﺗا هﺎﮕﺸﻧاد نﺎﺷﺎﻛ / دﻮﺷ

ﻞﻜﺷ V لﺎﺼﺗا ﺎﻳ زﺎﺑ ﺚﻠﺜﻣ لﺎﺼﺗا هﺎﮕﺸﻧاد نﺎﺷﺎﻛ / دﻮﺷ 1 مبحث بيست و چهارم: اتصال مثلث باز (- اتصال اسكات آرايش هاي خاص ترانسفورماتورهاي سه فاز دانشگاه كاشان / دانشكده مهندسي/ گروه مهندسي برق / درس ماشين هاي الكتريكي / 3 اتصال مثلث باز يا اتصال شكل فرض كنيد

Διαβάστε περισσότερα

تصاویر استریوگرافی.

تصاویر استریوگرافی. هب انم خدا تصاویر استریوگرافی تصویر استریوگرافی یک روش ترسیمی است که به وسیله آن ارتباط زاویه ای بین جهات و صفحات بلوری یک کریستال را در یک فضای دو بعدی )صفحه کاغذ( تعیین میکنند. کاربردها بررسی ناهمسانگردی

Διαβάστε περισσότερα

آزمایش 8: تقویت کننده عملیاتی 2

آزمایش 8: تقویت کننده عملیاتی 2 آزمایش 8: تقویت کننده عملیاتی 2 1-8 -مقدمه 1 تقویت کننده عملیاتی (OpAmp) داراي دو یا چند طبقه تقویت کننده تفاضلی است که خروجی- هاي هر طبقه به وروديهاي طبقه دیگر متصل شده است. در انتهاي این تقویت کننده

Διαβάστε περισσότερα

1 ﺶﻳﺎﻣزآ ﻢﻫا نﻮﻧﺎﻗ ﻲﺳرﺮﺑ

1 ﺶﻳﺎﻣزآ ﻢﻫا نﻮﻧﺎﻗ ﻲﺳرﺮﺑ آزمايش 1 بررسي قانون اهم بررسي تجربي قانون اهم و مطالعه پارامترهاي مو ثر در مقاومت الكتريكي يك سيم فلزي تي وري آزمايش هر و دارند جسم فيزيكي داراي مقاومت الكتريكي است. اجسام فلزي پلاستيك تكه يك بدن انسان

Διαβάστε περισσότερα

مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) X"Y=-XY" X" X" kx = 0

مثال( مساله الپالس در ناحیه داده شده را حل کنید. u(x,0)=f(x) f(x) حل: به کمک جداسازی متغیرها: ثابت = k. u(x,y)=x(x)y(y) XY=-XY X X kx = 0 مثال( مساله الپالس در ناحیه داده شده را حل کنید. (,)=() > > < π () حل: به کمک جداسازی متغیرها: + = (,)=X()Y() X"Y=-XY" X" = Y" ثابت = k X Y X" kx = { Y" + ky = X() =, X(π) = X" kx = { X() = X(π) = معادله

Διαβάστε περισσότερα

10 ﻞﺼﻓ ﺶﺧﺮﭼ : ﺪﻴﻧاﻮﺘﺑ ﺪﻳﺎﺑ ﻞﺼﻓ ﻦﻳا يا ﻪﻌﻟﺎﻄﻣ زا ﺪﻌﺑ

10 ﻞﺼﻓ ﺶﺧﺮﭼ : ﺪﻴﻧاﻮﺘﺑ ﺪﻳﺎﺑ ﻞﺼﻓ ﻦﻳا يا ﻪﻌﻟﺎﻄﻣ زا ﺪﻌﺑ فصل چرخش بعد از مطالعه اي اين فصل بايد بتوانيد : - مكان زاويه اي سرعت وشتاب زاويه اي را توضيح دهيد. - چرخش با شتاب زاويه اي ثابت را مورد بررسي قرار دهيد. 3- رابطه ميان متغيرهاي خطي و زاويه اي را بشناسيد.

Διαβάστε περισσότερα

ﻴﻓ ﯽﺗﺎﻘﻴﻘﺤﺗ و ﯽهﺎﮕﺸﻳﺎﻣزﺁ تاﺰﻴﻬﺠﺗ ﻩﺪﻨﻨﮐ

ﻴﻓ ﯽﺗﺎﻘﻴﻘﺤﺗ و ﯽهﺎﮕﺸﻳﺎﻣزﺁ تاﺰﻴﻬﺠﺗ ﻩﺪﻨﻨﮐ دستوركارآزمايش ميز نيرو هدف آزمايش: تعيين برآيند نيروها و بررسي تعادل نيروها در حالت هاي مختلف وسايل آزمايش: ميز مدرج وستون مربوطه, 4 عدد كفه وزنه آلومينيومي بزرگ و قلاب با نخ 35 سانتي, 4 عدد قرقره و پايه

Διαβάστε περισσότερα

هدف:.100 مقاومت: خازن: ترانزيستور: پتانسيومتر:

هدف:.100 مقاومت: خازن: ترانزيستور: پتانسيومتر: آزمايش شماره (10) تقويت كننده اميتر مشترك هدف: هدف از اين آزمايش مونتاژ مدار طراحي شده و اندازهگيري مشخصات اين تقويت كننده جهت مقايسه نتايج اندازهگيري با مقادير مطلوب و در ادامه طراحي يك تقويت كننده اميترمشترك

Διαβάστε περισσότερα

هر عملگرجبر رابطه ای روی يک يا دو رابطه به عنوان ورودی عمل کرده و يک رابطه جديد را به عنوان نتيجه توليد می کنند.

هر عملگرجبر رابطه ای روی يک يا دو رابطه به عنوان ورودی عمل کرده و يک رابطه جديد را به عنوان نتيجه توليد می کنند. 8-1 جبررابطه ای يک زبان پرس و جو است که عمليات روی پايگاه داده را توسط نمادهايی به صورت فرمولی بيان می کند. election Projection Cartesian Product et Union et Difference Cartesian Product et Intersection

Διαβάστε περισσότερα

( ) قضايا. ) s تعميم 4) مشتق تعميم 5) انتگرال 7) كانولوشن. f(t) L(tf (t)) F (s) Lf(t ( t)u(t t) ) e F(s) L(f (t)) sf(s) f ( ) f(s) s.

( ) قضايا. ) s تعميم 4) مشتق تعميم 5) انتگرال 7) كانولوشن. f(t) L(tf (t)) F (s) Lf(t ( t)u(t t) ) e F(s) L(f (t)) sf(s) f ( ) f(s) s. معادلات ديفرانسيل + f() d تبديل لاپلاس تابع f() را در نظر بگيريد. همچنين فرض كنيد ( R() > عدد مختلط با قسمت حقيقي مثبت) در اين صورت صورت وجود لاپلاس f() نامند و با قضايا ) ضرب در (انتقال درحوزه S) F()

Διαβάστε περισσότερα

ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد

ﯽﺳﻮﻃ ﺮﯿﺼﻧ ﻪﺟاﻮﺧ ﯽﺘﻌﻨﺻ هﺎﮕﺸﻧاد دانشگاه صنعتی خواجه نصیر طوسی دانشکده برق - گروه کنترل آزمایشگاه کنترل سیستمهای خطی گزارش کار نمونه تابستان 383 به نام خدا گزارش کار آزمایش اول عنوان آزمایش: آشنایی با نحوه پیاده سازی الکترونیکی فرایندها

Διαβάστε περισσότερα

جلسه 3 ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک کوانتمی بیان. d 1. i=0. i=0. λ 2 i v i v i.

جلسه 3 ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک کوانتمی بیان. d 1. i=0. i=0. λ 2 i v i v i. محاسبات کوانتمی (671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: محمد جواد داوري جلسه 3 می شود. ابتدا نکته اي در مورد عمل توابع بر روي ماتریس ها گفته می شود و در ادامه ي این جلسه اصول مکانیک

Διαβάστε περισσότερα

هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه

هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه آزما ی ش شش م: پا س خ فرکا نس ی مدا رات مرتبه اول هدف از این آزمایش آشنایی با رفتار فرکانسی مدارهاي مرتبه اول نحوه تأثیر مقادیر عناصر در این رفتار مشاهده پاسخ دامنه و پاسخ فاز بررسی رفتار فیلتري آنها بدست

Διαβάστε περισσότερα

V o. V i. 1 f Z c. ( ) sin ورودي را. i im i = 1. LCω. s s s

V o. V i. 1 f Z c. ( ) sin ورودي را. i im i = 1. LCω. s s s گزارش کار ا زمايشگاه اندازهگيري و مدار ا زمايش شمارهي ۵ مدار C سري خروجي خازن ۱۳ ا بانماه ۱۳۸۶ ي م به نام خدا تي وري ا زمايش به هر مداري که در ا ن ترکيب ي از مقاومت خازن و القاگر به کار رفتهشده باشد مدار

Διαβάστε περισσότερα

مقاومت مصالح 2 فصل 9: خيز تيرها. 9. Deflection of Beams

مقاومت مصالح 2 فصل 9: خيز تيرها. 9. Deflection of Beams مقاومت مصالح فصل 9: خيز تيرها 9. Deflection of eams دکتر مح مدرضا نيرومند دااگشنه ايپم نور اصفهان eer Johnston DeWolf ( ) رابطه بين گشتاور خمشی و انحنا: تير طره ای تحت بار متمرکز در انتهای آزاد: P انحنا

Διαβάστε περισσότερα

جلسه 9 1 مدل جعبه-سیاه یا جستاري. 2 الگوریتم جستجوي Grover 1.2 مسا له 2.2 مقدمات محاسبات کوانتمی (22671) ترم بهار

جلسه 9 1 مدل جعبه-سیاه یا جستاري. 2 الگوریتم جستجوي Grover 1.2 مسا له 2.2 مقدمات محاسبات کوانتمی (22671) ترم بهار محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: هیربد کمالی نیا جلسه 9 1 مدل جعبه-سیاه یا جستاري مدل هایی که در جلسه ي پیش براي استفاده از توابع در الگوریتم هاي کوانتمی بیان

Διαβάστε περισσότερα

را بدست آوريد. دوران

را بدست آوريد. دوران تجه: همانطر كه در كلاس بارها تا كيد شد تمرينه يا بيشتر جنبه آمزشي داشت براي يادگيري بيشتر مطالب درسي بده است مشابه اين سه تمرين كه در اينجا حل آنها آمده است در امتحان داده نخاهد شد. m b الف ماتريس تبديل

Διαβάστε περισσότερα

مقدمه -1-4 تحليلولتاژگرهمدارهاييبامنابعجريان 4-4- تحليلجريانمشبامنابعولتاژنابسته

مقدمه -1-4 تحليلولتاژگرهمدارهاييبامنابعجريان 4-4- تحليلجريانمشبامنابعولتاژنابسته مقدمه -1-4 تحليلولتاژگرهمدارهاييبامنابعجريان -2-4 بامنابعجريانوولتاژ تحليلولتاژگرهمدارهايي 3-4- تحليلولتاژگرهبامنابعوابسته 4-4- تحليلجريانمشبامنابعولتاژنابسته 5-4- ژاتلو و 6-4 -تحليلجريانمشبامنابعجريان

Διαβάστε περισσότερα

پروژه یازدهم: ماشین هاي بردار پشتیبان

پروژه یازدهم: ماشین هاي بردار پشتیبان پروژه یازدهم: ماشین هاي بردار پشتیبان 1 عموما براي مسایلی که در آنها دو دسته وجود دارد استفاده میشوند اما ماشین هاي بردار پشتیبان روشهاي متفاوتی براي ترکیب چند SVM و ایجاد یک الگوریتم دستهبندي چند کلاس

Διαβάστε περισσότερα

برخوردها دو دسته اند : 1) كشسان 2) ناكشسان

برخوردها دو دسته اند : 1) كشسان 2) ناكشسان آزمايش شماره 8 برخورد (بقاي تكانه) وقتي دو يا چند جسم بدون حضور نيروهاي خارجي طوري به هم نزديك شوند كه بين آنها نوعي برهم كنش رخ دهد مي گوييم برخوردي صورت گرفته است. اغلب در برخوردها خواستار اين هستيم

Διαβάστε περισσότερα

تمرینات درس ریاض عموم ٢. r(t) = (a cos t, b sin t), ٠ t ٢π. cos ٢ t sin tdt = ka۴. x = ١ ka ۴. m ٣ = ٢a. κds باشد. حاصل x٢

تمرینات درس ریاض عموم ٢. r(t) = (a cos t, b sin t), ٠ t ٢π. cos ٢ t sin tdt = ka۴. x = ١ ka ۴. m ٣ = ٢a. κds باشد. حاصل x٢ دانش اه صنعت شریف دانش ده ی علوم ریاض تمرینات درس ریاض عموم سری دهم. ١ سیم نازک داریم که روی دایره ی a + y x و در ربع اول نقطه ی,a را به نقطه ی a, وصل م کند. اگر چ ال سیم در نقطه ی y,x برابر kxy باشد جرم

Διαβάστε περισσότερα

طراحی الگوریتم هدایت افقی یک پرنده بدون سرنشین جهت پیمودن بهینه پایههای مسیر

طراحی الگوریتم هدایت افقی یک پرنده بدون سرنشین جهت پیمودن بهینه پایههای مسیر I S I C E مجله کنترل ISSN 8-8345 جلد 8 شماره تابستان 393 صفحه 47-57 طراحی الگوریتم هدایت افقی یک پرنده بدون سرنشین جهت پیمودن بهینه پایههای مسیر سيد جواد طالبيان جعفر حيرانی نوبری داانشجوی دکتری مهندسی

Διαβάστε περισσότερα

بخش غیرآهنی. هدف: ارتقاي خواص ابرکشسانی آلياژ Ni Ti مقدمه

بخش غیرآهنی. هدف: ارتقاي خواص ابرکشسانی آلياژ Ni Ti مقدمه بخش غیرآهنی هدف: ارتقاي خواص ابرکشسانی آلياژ Ni Ti مقدمه رفتار شبه کشسان )Pseudoelasticity( که به طور معمول ابرکشسان )superelasticity( ناميده می شود رفتار برگشت پذیر کشسان ماده در برابر تنش اعمالی است

Διαβάστε περισσότερα

تحلیل مدار به روش جریان حلقه

تحلیل مدار به روش جریان حلقه تحلیل مدار به روش جریان حلقه برای حل مدار به روش جریان حلقه باید مراحل زیر را طی کنیم: مرحله ی 1: مدار را تا حد امکان ساده می کنیم)مراقب باشید شاخه هایی را که ترکیب می کنید مورد سوال مسئله نباشد که در

Διαβάστε περισσότερα

پايداری Stability معيارپايداری. Stability Criteria. Page 1 of 8

پايداری Stability معيارپايداری. Stability Criteria. Page 1 of 8 پايداری Stility اطمينان از پايداری سيستم های کنترل در زمان طراحی ا ن بسيار حاي ز اهمييت می باشد. سيستمی پايدار محسوب می شود که: بعد از تغيير ضربه در ورودی خروجی به مقدار اوليه ا ن بازگردد. هر مقدار تغيير

Διαβάστε περισσότερα

اندازهگیری ضریب هدایت حرارتی جامدات در سیستم شعاعی و خطی

اندازهگیری ضریب هدایت حرارتی جامدات در سیستم شعاعی و خطی اندازهگیری ضریب هدایت حرارتی جامدات در سیستم شعاعی و خطی هدف آزمایش: هدف از انجام این آزمایش بررسی موارد زیر میباشد: محاسبه ضریب هدایت حرارتی )K( در طول یک ميله با جنس یکسان در سيستم محوری.)linear( محاسبه

Διαβάστε περισσότερα

تا 387 صفحه 1395 زمستان 4 شماره 48 دوره Vol. 48, No. 4, Winter 2016, pp

تا 387 صفحه 1395 زمستان 4 شماره 48 دوره Vol. 48, No. 4, Winter 2016, pp 9 تا 87 صفحه 9 زمستان شماره 8 دوره Vol. 8, No., Winter 06, pp. 87-9 زیست محیط و عمران مهندسی - امیرکبیر پژوهشی علمی نشریه Amirkabir Jounrnal of Science and Research Civil and Enviromental Engineering (AJSR-CEE)

Διαβάστε περισσότερα

آزمايشگاه ديناميك ماشين و ارتعاشات آزمايش چرخ طيار.

آزمايشگاه ديناميك ماشين و ارتعاشات آزمايش چرخ طيار. ` آزمايشگاه ديناميك ماشين و ارتعاشات dynlab@jamilnia.ir www.jamilnia.ir/dynlab ١ تئوري آزمايش چرخ طيار يا چرخ ل نگ (flywheel) صفحه مدوري است كه به دليل جرم و ممان اينرسي زياد خود قابليت بالايي در ذخيرهسازي

Διαβάστε περισσότερα

در اين ا زمايش ابتدا راهاندازي موتور القايي رتور سيمپيچي شده سه فاز با مقاومت مختلف بررسي و س سپ مشخصه گشتاور سرعت ا ن رسم ميشود.

در اين ا زمايش ابتدا راهاندازي موتور القايي رتور سيمپيچي شده سه فاز با مقاومت مختلف بررسي و س سپ مشخصه گشتاور سرعت ا ن رسم ميشود. ا زمايش 4: راهاندازي و مشخصه خروجي موتور القايي با رتور سيمپيچي شده 1-4 هدف ا زمايش در اين ا زمايش ابتدا راهاندازي موتور القايي رتور سيمپيچي شده سه فاز با مقاومت مختلف بررسي و س سپ مشخصه گشتاور سرعت ا

Διαβάστε περισσότερα

ICME Computed Torque Control

ICME Computed Torque Control کنترل ربات موازي 3-PRR با استفاده از روش گشتاور محاسبه شده 2 1* حمیدرضا کردجزي علیرضا اکبرزاده توتونچی 1- دانشجوي کارشناسی ارشد دانشکده مهندسی گروه مکانیک دانشگاه فردوسی مشهد Kordjazi@gmail.com 2- استادیار

Διαβάστε περισσότερα

جلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد.

جلسه 14 را نیز تعریف کرد. عملگري که به دنبال آن هستیم باید ماتریس چگالی مربوط به یک توزیع را به ماتریس چگالی مربوط به توزیع حاشیه اي آن ببرد. تي وري اطلاعات کوانتمی ترم پاییز 39-39 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: کامران کیخسروي جلسه فرض کنید حالت سیستم ترکیبی AB را داشته باشیم. حالت سیستم B به تنهایی چیست در ابتداي درس که حالات

Διαβάστε περισσότερα

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم

هو الحق دانشکده ي مهندسی کامپیوتر جلسه هفتم هو الحق دانشکده ي مهندسی کامپیوتر کدگذاري شبکه Coding) (Network شنبه 2 اسفند 1393 جلسه هفتم استاد: مهدي جعفري نگارنده: سید محمدرضا تاجزاد تعریف 1 بهینه سازي محدب : هدف پیدا کردن مقدار بهینه یک تابع ) min

Διαβάστε περισσότερα

معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد:

معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد: شکل کلی معادلات همگن خطی مرتبه دوم با ضرایب ثابت = ٠ cy ay + by + و معادله درجه دوم = ٠ c + br + ar را معادلهی مشخصه(کمکی) آن است. در اینجا سه وضعیت متفاوت برای ریشههای معادله مشخصه رخ میدهد: c ١ e r١x

Διαβάστε περισσότερα

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1

جلسه 12 به صورت دنباله اي از,0 1 نمایش داده شده اند در حین محاسبه ممکن است با خطا مواجه شده و یکی از بیت هاي آن. p 1 محاسبات کوانتمی (67) ترم بهار 390-39 مدرس: سلمان ابوالفتح بیگی نویسنده: سلمان ابوالفتح بیگی جلسه ذخیره پردازش و انتقال اطلاعات در دنیاي واقعی همواره در حضور خطا انجام می شود. مثلا اطلاعات کلاسیکی که به

Διαβάστε περισσότερα

آزمایش 2: تعيين مشخصات دیود پيوندي PN

آزمایش 2: تعيين مشخصات دیود پيوندي PN آزمایش 2: تعيين مشخصات دیود پيوندي PN هدف در اين آزمايش مشخصات ديود پيوندي PN را بدست آورده و مورد بررسي قرار مي دهيم. وسايل و اجزاي مورد نياز ديودهاي 1N4002 1N4001 1N4148 و يا 1N4004 مقاومتهاي.100KΩ,10KΩ,1KΩ,560Ω,100Ω,10Ω

Διαβάστε περισσότερα

( ) x x. ( k) ( ) ( 1) n n n ( 1) ( 2)( 1) حل سري: حول است. مثال- x اگر. يعني اگر xها از = 1. + x+ x = 1. x = y= C C2 و... و

( ) x x. ( k) ( ) ( 1) n n n ( 1) ( 2)( 1) حل سري: حول است. مثال- x اگر. يعني اگر xها از = 1. + x+ x = 1. x = y= C C2 و... و معادلات ديفرانسيل y C ( ) R mi i كه حل سري يعني جواب دقيق ميخواهيم نه به صورت صريح بلكه به صورت سري. اگر فرض كنيم خطي باشد, اين صورت شعاع همگرايي سري فوق, مينيمم اندازه است جواب معادله ديفرانسيل i نقاط

Διαβάστε περισσότερα

yazduni.ac.ir دانشگاه يزد چكيده: است. ١ -مقدمه

yazduni.ac.ir دانشگاه يزد چكيده: است. ١ -مقدمه كنترل سرعت هوشمند موتورهاي DC sharif_natanz@yahoo.com sedighi@ yazduni.ac.ir دانشگاه يزد دانشگاه يزد حميد رضا شريف خضري عليرضا صديقي اناركي چكيده: دامنه وسيع سرعت موتورهايDC و سهولت كنترل ا نها باعث كاربرد

Διαβάστε περισσότερα

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود.

تئوری جامع ماشین بخش سوم جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. مفاهیم اصلی جهت آنالیز ماشین های الکتریکی سه فاز محاسبه اندوکتانس سیمپیچیها و معادالت ولتاژ ماشین الف ) ماشین سنکرون جهت سادگی بحث یک ماشین سنکرون دو قطبی از نوع قطب برجسته مطالعه میشود. در حال حاضر از

Διαβάστε περισσότερα

جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز

جلسه 22 1 نامساویهایی در مورد اثر ماتریس ها تي وري اطلاعات کوانتومی ترم پاییز تي وري اطلاعات کوانتومی ترم پاییز 1391-1392 مدرس: ابوالفتح بیگی و امین زاده گوهري نویسنده: محمد مهدي مجاهدیان جلسه 22 تا اینجا خواص مربوط به آنتروپی را بیان کردیم. جهت اثبات این خواص نیاز به ابزارهایی

Διαβάστε περισσότερα

P = P ex F = A. F = P ex A

P = P ex F = A. F = P ex A محاسبه كار انبساطي: در ترموديناميك اغلب با كار ناشي از انبساط يا تراكم سيستم روبرو هستيم. براي پي بردن به اين نوع كار به شكل زير خوب توجه كنيد. در اين شكل استوانهاي را كه به يك پيستون بدون اصطكاك مجهز

Διαβάστε περισσότερα

تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: میباشد. تلفات خط انتقال با مربع توان انتقالی متناسب

تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: میباشد. تلفات خط انتقال با مربع توان انتقالی متناسب تلفات خط انتقال ابررسی یک شبکة قدرت با 2 به شبکة شکل زیر توجه کنید. ژنراتور فرضیات شبکه: این شبکه دارای دو واحد کامال یکسان آنها 400 MW میباشد. است تلفات خط انتقال با مربع توان انتقالی متناسب و حداکثر

Διαβάστε περισσότερα

3 و 2 و 1. مقدمه. Simultaneous كه EKF در عمل ناسازگار عمل كند.

3 و 2 و 1.  مقدمه. Simultaneous كه EKF در عمل ناسازگار عمل كند. بررسي سازگاري تخمين در الگوريتم EKF-SLAM و پيشنهاد يك روش جديد با هدف رسيدن به سازگاري بيشتر فيلتر و كاستن هرينه محاسباتي امير حسين تمجيدي حميد رضا تقيراد نينا مرحمتي 3 و و گروه رباتيك ارس دپارتمان كنترل

Διαβάστε περισσότερα

نيمتوان پرتو مجموع مجموع) منحني

نيمتوان پرتو مجموع مجموع) منحني شبيه سازي مقايسه و انتخاب روش بهينه پيادهسازي ردگيري مونوپالس در يك رادار آرايه فازي عباس نيك اختر حسن بولوردي صنايع الكترونيك شيراز Abbas.nikakhtar@Gmail.com صنايع الكترونيك شيراز hasan_bolvardi@yahoo.com

Διαβάστε περισσότερα

تمرین اول درس کامپایلر

تمرین اول درس کامپایلر 1 تمرین اول درس 1. در زبان مربوط به عبارت منظم زیر چند رشته یکتا وجود دارد (0+1+ϵ)(0+1+ϵ)(0+1+ϵ)(0+1+ϵ) جواب 11 رشته کنند abbbaacc را در نظر بگیرید. کدامیک از عبارتهای منظم زیر توکنهای ab bb a acc را ایجاد

Διαβάστε περισσότερα

تعيين مدول يانگ استاتيک سنگ ها با استفاده از مدول يانگ ديناميک ١ مسعود کريم نژاد دانشجوی کارشناسی ارشد مهندسی نفت دانشگاه شهيد باهنر کرمان -١ masoud_karimnezhad@yahoo.com چکيده تعيين مدول های الاستيک سنگ

Διαβάστε περισσότερα

آزمايش ارتعاشات آزاد و اجباري سيستم جرم و فنر و ميراگر

آزمايش ارتعاشات آزاد و اجباري سيستم جرم و فنر و ميراگر ` آزمايشگاه ديناميك ماشين و ارتعاشات آزمايش ارتعاشات آزاد و اجباري سيستم جرم و فنر و ميراگر dynlab@jamilnia.ir www.jamilnia.ir/dynlab ١ تئوري آزمايش سيستمهاي ارتعاشي ميتوانند بر اثر تحريكات دروني يا بيروني

Διαβάστε περισσότερα

یک روش بهینه سازی ترکیبی بر مبنای الگوریتم pso برای حل مسئله زمان بندی

یک روش بهینه سازی ترکیبی بر مبنای الگوریتم pso برای حل مسئله زمان بندی یک روش بهینه سازی ترکیبی بر مبنای الگوریتم pso برای حل مسئله زمان بندی خالصه: مسئله هاي زمان بندي و برنامه ريزي سازگارسازي و هماهنگ نمودن مجموعه اي از نهادها مانند رخدادها فعاليتها افراد ابزار و دستگاهها

Διαβάστε περισσότερα

مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل

مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل شما باید بعد از مطالعه ی این جزوه با مفاهیم ولتاژ افت ولتاژ و اختالف پتانسیل کامال آشنا شوید. VA R VB به نظر شما افت ولتاژ مقاومت R چیست جواب: به مقدار عددی V A

Διαβάστε περισσότερα

اراي ه روشي نوين براي حذف مولفه DC ميراشونده در رلههاي ديجيتال

اراي ه روشي نوين براي حذف مولفه DC ميراشونده در رلههاي ديجيتال o. F-3-AAA- اراي ه روشي نوين براي حذف مولفه DC ميراشونده در رلههاي ديجيتال جابر پولادي دانشكده فني و مهندسي دانشگاه ا زاد اسلامي واحد علوم و تحقيقات تهران تهران ايران مجتبي خدرزاده مهدي حيدرياقدم دانشكده

Διαβάστε περισσότερα

آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ(

آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ( آزمون مقایسه میانگین های دو جامعه )نمونه های بزرگ( فرض کنید جمعیت یک دارای میانگین و انحراف معیار اندازه µ و انحراف معیار σ باشد و جمعیت 2 دارای میانگین µ2 σ2 باشند نمونه های تصادفی مستقل از این دو جامعه

Διαβάστε περισσότερα

مدار معادل تونن و نورتن

مدار معادل تونن و نورتن مدار معادل تونن و نورتن در تمامی دستگاه های صوتی و تصویری اگرچه قطعات الکتریکی زیادی استفاده می شود ( مانند مقاومت سلف خازن دیود ترانزیستور IC ترانس و دهها قطعه ی دیگر...( اما هدف از طراحی چنین مداراتی

Διαβάστε περισσότερα

سبد(سرمايهگذار) مربوطه گزارش ميكند در حاليكه موظف است بازدهي سبدگردان را جهت اطلاع عموم در

سبد(سرمايهگذار) مربوطه گزارش ميكند در حاليكه موظف است بازدهي سبدگردان را جهت اطلاع عموم در بسمه تعالي در شركت هاي سبدگردان بر اساس پيوست دستورالعمل تاسيس و فعاليت شركت هاي سبدگردان مصوب هيي ت مديره سازمان بورس بانجام مي رسد. در ادامه به اراي ه اين پيوست مي پردازيم: چگونگي محاسبه ي بازدهي سبد

Διαβάστε περισσότερα

شبکه های عصبی در کنترل

شبکه های عصبی در کنترل شبکه های عصبی در کنترل دانشگاه نجف آباد درس: کنترل هوشمند در فضای سایبرنتیک مدرس: حمید محمودیان مدل ریاضی نرون مدل ریاضی یک نرون ساده به صورت روبرو است P: مقدار کمیت ورودی b: مقدار بایاس )عرض از مبدا تابع

Διαβάστε περισσότερα

جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار

جلسه 2 1 فضاي برداري محاسبات کوانتمی (22671) ترم بهار محاسبات کوانتمی (22671) ترم بهار 1390-1391 مدرس: سلمان ابوالفتح بیگی نویسنده: نادر قاسمی جلسه 2 در این درسنامه به مروري کلی از جبر خطی می پردازیم که هدف اصلی آن آشنایی با نماد گذاري دیراك 1 و مباحثی از

Διαβάστε περισσότερα

جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی:

جلسه 15 1 اثر و اثر جزي ی نظریه ي اطلاعات کوانتومی 1 ترم پاي یز جدایی پذیر باشد یعنی: نظریه ي اطلاعات کوانتومی 1 ترم پاي یز 1391-1391 مدرس: دکتر ابوالفتح بیگی ودکتر امین زاده گوهري نویسنده: محمدرضا صنم زاده جلسه 15 فرض کنیم ماتریس چگالی سیستم ترکیبی شامل زیر سیستم هايB و A را داشته باشیم.

Διαβάστε περισσότερα

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) :

قاعده زنجیره ای برای مشتقات جزي ی (حالت اول) : ۱ گرادیان تابع (y :f(x, اگر f یک تابع دومتغیره باشد ا نگاه گرادیان f برداری است که به صورت زیر تعریف می شود f(x, y) = D ۱ f(x, y), D ۲ f(x, y) اگر رویه S نمایش تابع (y Z = f(x, باشد ا نگاه f در هر نقطه

Διαβάστε περισσότερα

حل J 298 كنيد JK mol جواب: مييابد.

حل J 298 كنيد JK mol جواب: مييابد. تغيير ا نتروپي در دنياي دور و بر سيستم: هر سيستم داراي يك دنياي دور و بر يا محيط اطراف خود است. براي سادگي دنياي دور و بر يك سيستم را محيط ميناميم. محيط يك سيستم همانند يك منبع بسيار عظيم گرما در نظر گرفته

Διαβάστε περισσότερα

دهمین همایش بین المللی انرژی

دهمین همایش بین المللی انرژی بررسی اقتصادی بهترین روش خنک کاری هوای ورودی به توربو کمپرسور گازی حسین صیادی 2 رضا مهرابی پور محمد طهماسب زاده بایی دانشکده مهندسی مکانیک دانشگاه صنعتی خواجه نصیرالدین طوسی tahmasebzadeh68@gmail.com 2

Διαβάστε περισσότερα

متلب سایت MatlabSite.com

متلب سایت MatlabSite.com 11-F-REN-1712 بررسي اثر مبدلهاي ماتريسي در كاهش اثر نوسانات باد در توربينهاي بادي مغناطيس داي م چكيده علي رضا ناطقي دانشكده برق و كامپيوتر - دانشگاه شهيد بهشتي حسين كاظمي كارگر دانشكده برق و كامپيوتر -

Διαβάστε περισσότερα

١- مقدمه. ١ - Extended Kalman Filter ٢ -Experimental

١- مقدمه. ١ - Extended Kalman Filter ٢ -Experimental تخمين بلادرنگ پارامترهای موتور القايی توسط فيلتر کالمن بدون کاربرد سنسور ٣ ١ مهدی صادقيان لمراسکی جواد ٢ پشتان jpohtan@iut.ac.i meadeghian@yahoo.com ١- دانشکده مهندسی برق, دانشگاه صنعتی اميرکبير ٣- شرکت

Διαβάστε περισσότερα

بررسي علل تغيير در مصرف انرژي بخش صنعت ايران با استفاده از روش تجزيه

بررسي علل تغيير در مصرف انرژي بخش صنعت ايران با استفاده از روش تجزيه 79 نشريه انرژي ايران / دوره 2 شماره 3 پاييز 388 بررسي علل تغيير در مصرف انرژي بخش صنعت ايران با استفاده از روش تجزيه رضا گودرزي راد تاريخ دريافت مقاله: 89//3 تاريخ پذيرش مقاله: 89/4/5 كلمات كليدي: اثر

Διαβάστε περισσότερα

بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )2( shimiomd

بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )2( shimiomd بسم اهلل الرحمن الرحیم آزمایشگاه فیزیک )( shimiomd خواندن مقاومت ها. بررسی قانون اهم برای مدارهای متوالی. 3. بررسی قانون اهم برای مدارهای موازی بدست آوردن مقاومت مجهول توسط پل وتسون 4. بدست آوردن مقاومت

Διαβάστε περισσότερα

ˆ ˆ ˆ. r A. Axyz ( ) ( Axyz. r r r ( )

ˆ ˆ ˆ. r A. Axyz ( ) ( Axyz. r r r ( ) دینامیک و ارتعاشات ad ad ω x, ω y 6, ω z s s ωω ˆ ˆ ˆ ˆ y j+ω z k 6j+ k A xx x ˆ yy y ˆ zz z ˆ H I ω i+ I ω j+ I ω k, ω x HA Iyyω y ˆ i+ Izz ωz k ˆ Ωω y ĵ پاسخ تشریحی توسط: استاد مسیح لقمانی A گزینه درست

Διαβάστε περισσότερα

Angle Resolved Photoemission Spectroscopy (ARPES)

Angle Resolved Photoemission Spectroscopy (ARPES) Angle Resolved Photoemission Spectroscopy (ARPES) روش ARPES روشی است تجربی که برای تعیین ساختار الکترونی مواد به کار می رود. این روش بر پایه اثر فوتوالکتریک است که توسط هرتز کشف شد: الکترونها می توانند

Διαβάστε περισσότερα

روش ابداعی کنترل بهینه غیرخطی در توربین بادی با حداقل سازی نوسانات توان و گشتاور

روش ابداعی کنترل بهینه غیرخطی در توربین بادی با حداقل سازی نوسانات توان و گشتاور روش ابداعی کنترل بهینه غیرخطی در توربین بادی با حداقل سازی نوسانات توان و گشتاور فرانک معتمدی * دکترفرید شیخ االسالم 2 -دانشجوی رشته برق دانشگاه آزاد واحد نجفآباد Fa_motamedi@yahoo.com 2 -استاد گروه برق

Διαβάστε περισσότερα

خلاصه: ۱- مقدمه:

خلاصه: ۱- مقدمه: شيوه اي جديد در کنترل برداري بدون سنسور موتور سنکرون با مغناطيس داي م بدون نياز به تخمين سرعت دکتر حميد رضا تقي راد و مهندس احسان نوحي دانشکده برق دانشگاه صنعتي خواجه نصيرالدين طوسي صندوق پستي ۱۶۳۱۵-۱۳۵۵

Διαβάστε περισσότερα

1- مقدمه است.

1- مقدمه است. آموزش بدون نظارت شبكه عصبي RBF به وسيله الگوريتم ژنتيك محمدصادق محمدي دانشكده فني دانشگاه گيلان Email: m.s.mohammadi@gmail.com چكيده - در اين مقاله روشي كار آمد براي آموزش شبكه هاي عصبي RBF به كمك الگوريتم

Διαβάστε περισσότερα

يا (Automatic Generation Control) AGC

يا (Automatic Generation Control) AGC و ١ شبيه سازي سيستم AGC دو ناحيه اي در فضاي تجديدساختار شده صنعت برق با استفاده از تخمينگر حالت جواد ساده استاديار ٢ ١ الياس رخشاني دانشجوي کارشناسي ارشد- کنترل ١ گروه کارشناسي ارشد کنترل دانشگاه ا زاد

Διαβάστε περισσότερα

مقاطع مخروطي 1. تعريف مقاطع مخروطي 2. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره

مقاطع مخروطي 1. تعريف مقاطع مخروطي 2. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره مقاطع مخروطي فصل در اين فصل ميخوانيم:. تعريف مقاطع مخروطي. دايره الف. تعريف و انواع معادله دايره ب. وضعيت خط و دايره پ. وضعيت دو دايره ت. وتر مشترك دو دايره ث. طول مماس و طول وتر مينيمم ج. دورترين و نزديكترين

Διαβάστε περισσότερα

:نتوين شور شور هدمع لکشم

:نتوين شور شور هدمع لکشم عددی آناليز جلسه چھارم حل معادلات غير خطي عمده روش نيوتن: مشکل f ( x را در f ( x و برای محاسبه ھر عضو دنباله باید ھر مرحله محاسبه کرد. در روشھای جایگزین تقریبی f ( x x + = x f جایگزین میکنم کنيم. ( x مشتق

Διαβάστε περισσότερα

تحليل امواج خطی در محيط دریایی با استفاده از روش بدون شبكه حداقل مربعات گسسته مختلط

تحليل امواج خطی در محيط دریایی با استفاده از روش بدون شبكه حداقل مربعات گسسته مختلط فصلنامه علمی - سال چهارم زمستان 69 تحليل امواج خطی در محيط دریایی با استفاده از روش بدون شبكه حداقل مربعات گسسته مختلط پرویز قدیمی 1 مرتضی کالهدوزان 2 صائب فرجی 3 pghadimi@aut.ac.ir 1- استاد دانشکده مهندسی

Διαβάστε περισσότερα

HMI SERVO STEPPER INVERTER

HMI SERVO STEPPER INVERTER راهنماي راهاندازي سريع درايوهاي مخصوص ا سانسور كينكو (سري (FV109 سري درايوهاي FV109 كينكو درايوهاي مخصوص ا سانسور كينكو ميباشد كه با توجه به نيازمنديهاي اساسي مورد نياز در ايران به بازار عرضه شدهاند. به

Διαβάστε περισσότερα

تلفات کل سيستم کاهش مي يابد. يکي ديگر از مزاياي اين روش بهبود پروفيل ولتاژ ضريب توان و پايداري سيستم مي باشد [-]. يکي ديگر از روش هاي کاهش تلفات سيستم

تلفات کل سيستم کاهش مي يابد. يکي ديگر از مزاياي اين روش بهبود پروفيل ولتاژ ضريب توان و پايداري سيستم مي باشد [-]. يکي ديگر از روش هاي کاهش تلفات سيستم اراي ه روشي براي کاهش تلفات در سيستم هاي توزيع بر مبناي تغيير محل تغذيه سيستم هاي توزيع احد کاظمي حيدر علي شايانفر حسن فشکي فراهاني سيد مهدي حسيني دانشگاه علم و صنعت ايران- دانشکده مهندسي برق چکيده براي

Διαβάστε περισσότερα

کنترل تطبیقی غیر مستقیم مبتنی بر تخصیص قطب با مرتبه کسری

کنترل تطبیقی غیر مستقیم مبتنی بر تخصیص قطب با مرتبه کسری چکیده : کنترل تطبیقی غیر مستقیم مبتنی بر تخصیص قطب با مرتبه کسری روش طراحی قوانین کنترل چندجمله ای با استفاده از جایابی قطب راه کار مناسبی برای بسیاری از کاربردهای صنعتی می باشد. این دسته از کنترل کننده

Διαβάστε περισσότερα

چكيده 1- مقدمه درخت مشهد ايران فيروزكوه ايران باشد [7]. 5th Iranian Conference on Machine Vision and Image Processing, November 4-6, 2008

چكيده 1- مقدمه درخت مشهد ايران فيروزكوه ايران باشد [7]. 5th Iranian Conference on Machine Vision and Image Processing, November 4-6, 2008 پنهاني سازي تصوير با استفاده از تابع آشوب و درخت جستجوي دودويي رسول عنايتي فر دانشكده مهندسي كامپيوتر دانشگاه آزاد اسلامي فيروزكوه ايران r.enayatifar@iaufb.ac.ir مرتضي صابري كمرپشتي دانشكده مهندسي كامپيوتر

Διαβάστε περισσότερα

رياضي 1 و 2. ( + ) xz ( F) خواص F F. u( x,y,z) u = f = + + F = g g. Fx,y,z x y

رياضي 1 و 2. ( + ) xz ( F) خواص F F. u( x,y,z) u = f = + + F = g g. Fx,y,z x y رياضي و رياضي و F,F,F F= F ˆ ˆ ˆ i+ Fj+ Fk)F ديورژانس توابع برداري ديورژانس ميدان برداري كه توابع اسكالر و حقيقي هستند) به صورت زير تعريف ميشود: F F F div ( F) = + + F= f در اين صورت ديورژانس گراديان,F)

Διαβάστε περισσότερα

t a a a = = f f e a a

t a a a = = f f e a a ا زمايشگاه ماشينه يا ۱ الکتريکي ا زمايش شمارهي ۴-۱ گزارش کار راهاندازي و تنظيم سرعت موتورهايي DC (شنت) استاد درياباد نگارش: اشکان نيوشا ۱۶ ا ذر ۱۳۸۷ ي م به نام خدا تي وري ا زمايش شنت است. در اين ا زمايش

Διαβάστε περισσότερα

* خلاصه

* خلاصه دانشجوي- ششمين كنگره ملي مهندسي عمران 6 و 7 ارديبهشت 39 دانشگاه سمنان سمنان ايران بررسي و مقايسه همگرايي پايداري و دقت در روشهاي گام به گام انتگرالگيري مستقيم زماني 3 سبحان رستمي * علي معينالديني حامد

Διαβάστε περισσότερα

جلسه ی ۳: نزدیک ترین زوج نقاط

جلسه ی ۳: نزدیک ترین زوج نقاط دانشکده ی علوم ریاضی ا نالیز الگوریتم ها ۴ بهمن ۱۳۹۱ جلسه ی ۳: نزدیک ترین زوج نقاط مدر س: دکتر شهرام خزاي ی نگارنده: امیر سیوانی اصل ۱ پیدا کردن نزدیک ترین زوج نقطه فرض می کنیم n نقطه داریم و می خواهیم

Διαβάστε περισσότερα

مقدمه در این فصل با مدل ارتعاشی خودرو آشنا میشویم. رفتار ارتعاشی به فرکانسهای طبیعی و مود شیپهای خودرو بستگی دارد. این مبحث به میزان افزایش راحتی

مقدمه در این فصل با مدل ارتعاشی خودرو آشنا میشویم. رفتار ارتعاشی به فرکانسهای طبیعی و مود شیپهای خودرو بستگی دارد. این مبحث به میزان افزایش راحتی مقدمه در این فصل با مدل ارتعاشی خودرو آشنا میشویم. رفتار ارتعاشی به فرکانسهای طبیعی و مود شیپهای خودرو بستگی دارد. این مبحث به میزان افزایش راحتی خودرو و کاهش سر و صداها و لرزشهای داخل اتاق موتور و...

Διαβάστε περισσότερα

چكيده. Keywords: Nash Equilibrium, Game Theory, Cournot Model, Supply Function Model, Social Welfare. 1. مقدمه

چكيده. Keywords: Nash Equilibrium, Game Theory, Cournot Model, Supply Function Model, Social Welfare. 1. مقدمه اثرات تراكم انتقال بر نقطه تعادل بازار برق در مدل هاي كورنات و Supply Function منصوره پيدايش * اشكان رحيمي كيان* سيد محمدحسين زندهدل * مصطفي صحراي ي اردكاني* *دانشكده مهندسي برق و كامپيوتر- دانشگاه تهران

Διαβάστε περισσότερα

محدودیت دامنه ورودی و عدم قطعیت در آسیب

محدودیت دامنه ورودی و عدم قطعیت در آسیب دوره 48 شماره 2 تابستان 1395 صفحه 115 تا 124 Vol. 48, No. 2, Summer 2016, pp. 115-124 نشریه علمی پژوهشی امیرکبیر - مهندسی مکانیک AmirKabir Jounrnal of Science & Research Mechanical Engineering ASJR-ME

Διαβάστε περισσότερα

حفاظت مقایسه فاز خطوط انتقال جبرانشده سري.

حفاظت مقایسه فاز خطوط انتقال جبرانشده سري. حفاظت مقایسه فاز در خطوط انتقال جبران شده سري همراه با MOV 2 1 محمد رضا پویان فر جواد ساده 1 دانشگاه آزاد اسلامی واحد گناباد reza.pooyanfar@gmail.com 2 دانشکده فنی مهندسی دانشگاه فردوسی مشهد sadeh@um.ac.ir

Διαβάστε περισσότερα

جلسه ی ۱۰: الگوریتم مرتب سازی سریع

جلسه ی ۱۰: الگوریتم مرتب سازی سریع دانشکده ی علوم ریاضی داده ساختارها و الگوریتم ها ۸ مهر ۹ جلسه ی ۱۰: الگوریتم مرتب سازی سریع مدر س: دکتر شهرام خزاي ی نگارنده: محمد امین ادر یسی و سینا منصور لکورج ۱ شرح الگور یتم الگوریتم مرتب سازی سریع

Διαβάστε περισσότερα

چكيده 1- مقدمه

چكيده 1- مقدمه تشخيص پوست بر اساس يادگيري تقويتي مريم حبيبي پور مهديه پوستچي حميدرضا پوررضا سعيد راحتي قوچاني گروه هوش مصنوعي دانشگاه آزاد اسلامي مشهد گروه هوش مصنوعي دانشگاه علم و صنعت ايران گروه مهندسي كامپيوتر دانشگاه

Διαβάστε περισσότερα

آزمایش میلیکان هدف آزمایش: بررسی کوانتایی بودن بار و اندازهگیري بار الکترون مقدمه: روش مشاهده حرکت قطرات ریز روغن باردار در میدان عبارتند از:

آزمایش میلیکان هدف آزمایش: بررسی کوانتایی بودن بار و اندازهگیري بار الکترون مقدمه: روش مشاهده حرکت قطرات ریز روغن باردار در میدان عبارتند از: آزمایش میلیکان هدف آزمایش: بررسی کوانتایی بودن بار و اندازهگیري بار الکترون مقدمه: یک (R.A.Millikan) رابرت میلیکان 1909 در سال روش عملی براي اندازهگیري بار یونها گزارش کرد. این روش مشاهده حرکت قطرات ریز

Διαβάστε περισσότερα

ميثم اقتداري بروجني دانشده ي برق دانشگاه يزد 1_ مقدمه

ميثم اقتداري بروجني دانشده ي برق دانشگاه يزد 1_ مقدمه ي ا کنترل سرعت موتور القايي با استفاده از شبکه ي عصبي ميثم اقتداري بروجني دانشده ي برق دانشگاه يزد meysameghtedari@yahoo.com است. چکيده: در اين مقاله ابتدا مقدمه اي در مورد ويژگي هاي موتورهاي القايي وکنترل

Διαβάστε περισσότερα

طراحي و شبيه سازي آرايه اي از آنتن هاي ميكرواستريپ دو فركانسي براي يك ميكرو ماهواره كوچك مرتضي كازروني- دكتر احمد چلداوي دانشجوي دكتراي دانشگاه علم و صنعت ايران و هيي ت علمي دانشگاه صنعتي مالك اشتر- دانشيار

Διαβάστε περισσότερα

O 2 C + C + O 2-110/52KJ -393/51KJ -283/0KJ CO 2 ( ) ( ) ( )

O 2 C + C + O 2-110/52KJ -393/51KJ -283/0KJ CO 2 ( ) ( ) ( ) به كمك قانون هس: هنري هس شيميدان و فيزيكدان سوي يسي - روسي تبار در سال ۱۸۴۰ از راه تجربه دريافت كه گرماي وابسته به يك واكنش شيمياي مستقل از راهي است كه براي انجام ا ن انتخاب مي شود (در دماي ثابت و همچنين

Διαβάστε περισσότερα

طراحی و تعیین استراتژی بهره برداری از سیستم ترکیبی توربین بادی-فتوولتاییک بر مبنای کنترل اولیه و ثانویه به منظور بهبود مشخصههای پایداری ریزشبکه

طراحی و تعیین استراتژی بهره برداری از سیستم ترکیبی توربین بادی-فتوولتاییک بر مبنای کنترل اولیه و ثانویه به منظور بهبود مشخصههای پایداری ریزشبکه طراحی و تعیین استراتژی بهره برداری از سیستم ترکیبی توربین بادی-فتوولتاییک بر مبنای کنترل اولیه و ثانویه به منظور بهبود مشخصههای پایداری ریزشبکه 2 1* فرانک معتمدی فرید شیخ االسالم 1 -دانشجوی دانشکده برق

Διαβάστε περισσότερα

چکيده

چکيده تشخيص مرزهاي عنبيه در تصوير چشم در سامانههاي تشخيص هويت با استفاده از ماسک لاپلاسين و تبديل هاف هاتف مهرابيان دانشگاه تهران h.mehrabian@ece.ut.ac.ir احمد پورصابري دانشگاه تهران a.poursaberi@ece.ut.ac.ir

Διαβάστε περισσότερα

چكيده 1- مقدمه شبيهسازي ميپردازد. ميشود 8].[1, 2, 3, 4, 5, 6, 7,

چكيده 1- مقدمه شبيهسازي ميپردازد. ميشود 8].[1, 2, 3, 4, 5, 6, 7, سال سوم/ شماره سوم/ پاي يز 188 بهبود پاسخ گشتاور و كاهش خطاي سرعت در كنترل مستقيم گشتاور موتور القايي با استفاده از منطق فازي 1 حميدرضا فخاريزاده بافقي محمدباقر منهاج عليرضا صديقي 1- مربي دانشگاه آزاد

Διαβάστε περισσότερα

فصل چهارم تعیین موقعیت و امتدادهای مبنا

فصل چهارم تعیین موقعیت و امتدادهای مبنا فصل چهارم تعیین موقعیت و امتدادهای مبنا هدف های رفتاری پس از آموزش و مطالعه این فصل از فراگیرنده انتظار می رود بتواند: 1 راهکار کلی مربوط به ترسیم یک امتداد در یک سیستم مختصات دو بعدی و اندازه گیری ژیزمان

Διαβάστε περισσότερα

بسمه تعالی «تمرین شماره یک»

بسمه تعالی «تمرین شماره یک» بسمه تعالی «تمرین شماره یک» شماره دانشجویی : نام و نام خانوادگی : نام استاد: دکتر آزاده شهیدیان ترمودینامیک 1 نام درس : ردیف 0.15 m 3 میباشد. در این حالت یک فنر یک دستگاه سیلندر-پیستون در ابتدا حاوي 0.17kg

Διαβάστε περισσότερα